
 QEX March/April 2015 3

Ted Drell, W5HEU

893 Ridgeview Dr, Pineville, LA 71360; teddy@tldrell.com

I am an old antique radio buff, and as
anyone playing with such old toys as these
will tell you, you must have a variable
voltage transformer (autotransformer) to
work on them. (One brand name of such an
autotransformer is Variac.) I had one that
I put together from excess parts; a “Bud”
box, a panel mounted autotransformer, fuse
holder, switch, and a panel mounted AC
receptacle. This was a neat unit that would
handle 3 A and fit nicely on my workbench.
It did a good job until it was overloaded and
I let the smoke out. The problem was that
there was no way to monitor the voltage and
current without using external meters and
that was messy. Oh well. I needed to add
meters to the unit, but panel space was at a
premium so the unit sat there with the top off
taking up space.

Then along came the May 2013 issue
of QST and the article on page 39 touting
the merits of the Arduino Uno processor.
I immediately ordered two of these little
guys to play with. I got the complete
experimenters kit with prototype board,
LCD display, and so on. It did not take long
to realize that this could be the answer I’ve
been looking to use for a number of projects.
I have several going on in parallel, but one is
now finished. It is an instrumented version of
my Autotransformer, and the details follow.

The Circuit
The May 2013 article in QST gives the

basics to get started with the Arduino, and
there are books from ARRL as well as lots
of free stuff on the Internet that will give you
most of what you need for the Arduino itself,

Here is a modern twist to controlling an old workbench essential.

An Experimenter’s Variable
Voltage Transformer

so I won’t take up space with that. It became
obvious that I need some sort of interface
for the processor. More searching revealed
multiple prototype “shields” available in the
range of $15.00 to $25.00. I chose the Proto-
Screwshield (Wingshield) kit from Adafruit
($16.00) because it has screw type terminal
blocks for all of the Arduino connections
and a large prototyping area.

The first interface was to the LCD
readout. For that, I used a dual row, 8 pins
per row header. The LCD also has a dual
row header, so a 16 conductor ribbon cable
with IDC connectors was used to connect
the proto board to the LCD. The only
component needed for the LCD was the
contrast potentiometer.

All that was needed to complete the
project was a voltage and current transducer
and the project was done. I think my “junk
box” is better than the average ham’s, because
I design and build a lot of small portable test
systems. I had a current transducer that was
self excited and would output 0 to 5 V DC
for 0 to 10 A. Since the autotransformer was
a 3 A unit, two turns of wire through the
current transducer made it 0 to 5 V DC for
0 to 5 A. No scaling is necessary because
the Arduino analog input is 0 to 5 V DC;
Perfect! The voltage transducer is also self
excited and puts out 0 to 5 V DC for 0 to
600 V AC input. I multiplied the 5 V output
by 120 in the software and I now read line
voltage perfectly.

Figure 1 — Front panel layout.

1The author’s software code for the Arduino is
available for download from the ARRL QEX
files web page. Go to www.arrl.org/qexfiles
and look for the file 3x13_Drell.zip.

4 QEX March/April 2015

Table 1
Software Code Listing for the Arduino
/* Variac Voltage and Current Monitor
 Set for a 24x2 LCD display.
 The circuit:
 * LCD RS pin to digital pin 7
 * LCD Enable pin to digital pin 6
 * LCD D4 pin to digital pin 5
 * LCD D5 pin to digital pin 4
 * LCD D6 pin to digital pin 3
 * LCD D7 pin to digital pin 2
 * LCD R/W pin to ground
 * 10K resistor:
 * ends to +5V and ground
 * wiper to LCD VO pin (pin 3)
 Library originally added 18 Apr 2008 by David A. Mellis library modified 5 Jul 2009
 by Limor Fried (http://www.ladyada.net)
 */

// include the library code:
#include <LiquidCrystal.h>
//#include <OneWire.h>
//#include <DallasTemperature.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

//const int busPin = 10;
//OneWire bus(busPin);
//DallasTemperature sensors (&bus);
//DeviceAddress sensor;

int voltage=A0; // select the input pin for the voltage sensor
int current1=A1; // select the input pin for the current sensor #1

int voltageValue = 0; // variable to store the value coming from the voltage sensor
int current1Value = 0; // variable to store the value coming from the current sensor #1

float curtrip = 3.00;
int ledPin = 9;
int relayPin = 8;

void setup() {

// pinMode(busPin, INPUT);
// sensors.begin();
// sensors.getAddress(sensor, 0);

 pinMode(ledPin, OUTPUT);
 pinMode(relayPin, OUTPUT);
 // set up the LCD’s number of columns and rows:
 lcd.begin(24, 2); // initialize the lcd
 lcd.clear(); // clear lcd
 lcd.setCursor(3,0);
 lcd.print(“TDA LLC”);
 lcd.setCursor(1,1);
 lcd.print(“Variac Monitor”);

 QEX March/April 2015 5

 digitalWrite(ledPin, LOW);
 digitalWrite (relayPin, LOW);

 delay(3000);

 }

 void loop() {

 // sensors.requestTemperatures();

 // float tempF = sensors.getTempF(sensor);

 voltageValue = analogRead(voltage);
 current1Value = analogRead(current1);

 float vol = (voltageValue * (5.00/1023.0))*30;
 float cur1 = current1Value * (5.00/1023.0);

 // set the cursor to column 0, line 0

 if (cur1 < curtrip){

 digitalWrite(ledPin, LOW);
 digitalWrite (relayPin, HIGH);
 lcd.clear();
 // read and display the voltage
 lcd.setCursor(0,0);
 lcd.print(“Vol=”);
 lcd.setCursor(5,0);
 lcd.print(vol);

 // lcd.setCursor(13,0);
 // lcd.print(“Temp=”);
 // lcd.setCursor(19,0);
 // lcd.print(tempF);

 // read and display the current
 lcd.setCursor(0, 1);
 lcd.print(“Cur=”);
 lcd.setCursor(7, 1);
 lcd.print(cur1);

 delay(500);

 }
 else{
 while(1){
 digitalWrite(ledPin, HIGH);
 digitalWrite(relayPin, LOW);
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print(“Tripped Over Cur”);
 lcd.setCursor(0,1);
 lcd.print(“Press Reset”);
 delay(1000);
 }
 }

 }

6 QEX March/April 2015

Since I smoked the first autotransformer,
I wanted over-current protection. With a
microprocessor now working, adding a little
software to protect the unit was no problem. I
did have to add a transistor driver and a relay
for this to work. The software allows the unit
to operate until the current reaches 3.0 A,
at which point it disconnects the power,
thereby protecting the autotransformer from
overload. Once the system is tripped, you
have to manually reset it. When tripped, the
LCD display says “Tripped on over current;
Press reset.” If the overload is removed, the
system will reset and resume operation.

The low current relay on the prototype
board was not large enough to switch line
voltage, so I used an external relay. I had
an open frame power supply that I used
to power the Arduino and relays. Since
the recommended power for the Arduino

is nominally 12 V DC, I used a neat little
DC-DC converter from Murata. It does not
get hot and is small so that it fits on the proto
board with no heat sink needed. Rounding
it out, I included an LED to provide trip
indication if desired.

A complete parts list is included as a
guide. My sensors are expensive and cheaper
ones are available. This article is intended
to show the flexibility of the processor
and how I applied it. With a little software
modification, it can do a multitude of things.

Figure 1 shows the completed project,
with the main display showing the adjusted
voltage as well as the current. The LCD
display is a 24 × 2 (or 2 × 24) which means
there are 2 lines each with 24 characters. This
limits the dialog. Other displays can be used
if defined in the software. I also have another
project where I can select multiple pages to

display by switch selection, so anything is
possible.

Figure 2 is the wiring of the protoshield and
Figure 3 is the wiring of the autotransformer.

The software is available for download
from the ARRL QEX files web page.1 It is
open source so you are free to use it as is, or
change it to suit your needs. The language
is basically C++ so anyone familiar with
C++ will not have any problems using it.
The programming guides and libraries are
available for free download from the Arduino
web site.

The software was originally written
for another project and had the ability to
add the Dallas Semiconductor “One Wire”
temperature sensor. Since this was not used
in this project, the code for this is commented
out.

QX1503-Drell02

GND
16

DB7
14

DB6
13

DB5
12

DB4
11

DB3
10

DB2
9

DB1
8

DB0
7

E
6

R/W
5

RS
4

CONTRAST
3

+5V
2

GND
1

16 x 2 LCD

U1

LS1

Relay
DPDT

5

4

7

8
6

3

DI0AI5
5 0

DI1AI4
4 1

DI2AI3
3 2

DI3AI2
2 3

DI4AI1
1 4

DI5AI0
0 5

DI6

VIN
1

6

DI7

GND
2

7

DI8

GND
3

8

DI9

5V
4

9

DI10

3V
5

10

DI11

RST
6

11

DI12
12

DI13
13

REF
15

Proto Shield

U2

BACKLIGHT
15

16

14

13

12

11

10

9

8

7

6

5

4

3

2

1

15

Jumper

J9

16

14

13

12

11

10

9

8

7

6

5

4

3

2

1

15

GND
14

OUTIN

U3

LM7812C
TO220

24 V
To Figure 3

31
VOUTVIN

U6

L78M05
TO220

31

J2

L1 Current
To Figure 3

J3

Voltage
To Figure 3

J4

2

1

2

1

1

2

J6

2

1

2

1D2
1N4001

Q1
2N2222A

5 V

R1
10 kΩ

5 V

R4
560 Ω

5 V

R3
2.2 kΩ

5 V2

1

2 2

Figure 2 — The schematic diagram of the Arduino protoshield.

 QEX March/April 2015 7

QX1503-Drell03

V+L1

V–L2

PS1

Single Power Supply

2 1

3

J7
Plug

AC Male
F1

HKP-5A

SW1

DPST

1 2

3

J8
Receptacle
AC Female

2

1

LS2

782XBXM4L

To Figure 2
24 V

To Figure 2
J6

U5
i–Snail–V–10O

ut
 –

O
ut

 +

To Figure 2
J2

3

2

T1
Variac

1

5

4

7

8
6

3

OUT+LINE2

OUT–LINE1

U4

108-130

To Figure 2
J3

2

1

2

1

2

1

2

1

Table 2
Autotransformer Parts List

Reference	 Quantity	 Description	 Source
U2	 1	 “Screw” Protoshield 	 ADAFruit
U3	 1	 LM7812C/TO220 	 Newark
U6	 1	 L78M05/TO220	 Newark
LS2	 1	 DPDT Relay; 24 V DC Coil; Magnacraft with socket 782XBXBM4L
U1	 1	 24 × 2 LCD display; Luminix
D2	 1	 1N4001 Diode
Q1	 1	 2N2222A Transistor	
R1	 1	 10 kW single turn trim pot
R3	 1 	 2.2 kW ¼ W
R4	 1	 Not Used In This Version
D1	 1 	 LED Not Used In This Version
F1	 1	 HKP Fuse Holder with 3AG 5 A Fuse
LS1	 1	 DPDT Relay, 5 V DC Coil, Miniature (Omiron)
PS1	 1	 LPS55 power supply	 Newark
U5	 1	 i-snail –V-10 Current Transducer	 ELKOR
U4	 1	 108 to 130 V Voltage Transducer (AAC)	 American Aerospace Controls, Inc
T1	 1	 Variac 291	 Staco
SW1	 1	 DPDT miniature toggle switch	
J7	 1	 Input Power Connector 120 V AC @ 10 A
J8	 1	 Output Power Connector; 120 V AC @ 10 A

Figure 3 — Here is the chassis wiring diagram.

8 QEX March/April 2015

Construction
The unit is assembled in a standard Bud

cabinet with components placed as shown
in Figure 4. The only critical wiring was
the routing of the ribbon cable from the
protoshield to the LCD readout. It needs to be
dressed well away from the AC components
as AC transients caused the readout to reset
and display junk.

The LCD cover glass was made from
clear acrylic material available at most home
building supply houses. I cut it to size and
used my router table to bevel the edges.

Parts layout in the enclosure is not
critical and was guided by the fact that all
of the controls were added on to the original
“simple” autotransformer. The Arduino Uno
and protoshield were mounted on the rear
panel with the power supply, voltage sensor
and power relay mounted on the bottom
plate. The current transducer is mounted on
the front panel next to the display.

Figure 5 is a close up of the protoshield
showing parts layout. The 12 V converter is
on the right side while the 5 V converter for
the backlight is on the left side.

Figure 5 — This is a close-up view of the Arduino protoshield.

Figure 4 — Top View showing the parts layout.

Ted Drell was first licensed in 1954 as
WN5HEU, and obtained his General class
license 1 year later, when his call sign changed to
W5HEU. His license expired in 1968 while he was
overseas, and he was out of ham radio until 2006,
when he earned his Amateur Extra class license.

Ted studied Electrical Engineering at Tulane
University and The University Southwestern
Louisiana. He also studied computer science at
Houston Community College, where his primary
focus was on “C” and machine language
programming.

Ted worked for AT&T Long Lines, supporting

carrier and microwave systems, and Bendix
Field Engineering, supporting Stadan and
Man Space Programs during the Apollo Space
Program (Missions 7-11). He has also been
self-employed in Metrology and as a design
engineer and engineering manager in multiple
areas of energy production.

Ted retired in 2007, although he continues
with design and fabrication of one-off products
for oil field production control systems. He
enjoys antique radios (especially Collins,
Drake, National, and other brands from that
era) and using microprocessors.

